Snad každý si dokáže představit vývoj dítěte, které je nejprve schopno ukázat tři vlastní prsty namísto tří různých předmětů, později místo prstů napsat číslici 3 a dokonce časem tuto číslici zastoupit písmenem „x“. Jsme-li vedeni naší vlastní důvěrně známou zkušeností, jsme ochotni vstoupit i do světa naprosté abstrakce.
Výuka matematiky orientovaná na budování schémat vychází především z vlastní zkušenosti dětí. Při řešení úloh sbírají děti různé matematické zkušenosti. Když se například dítě pokouší spočítat tři lentilky, počítá jeden, dva, tři a ukazuje na ně. Podobným způsobem spočítá tři jablka, tři lidi u stolu, tři kroky i tři tlesknutí. Diskutuje s kamarádem, jak to dělá on, až najednou zobecní: „Aha, tři je vždycky tolik“. A ukáže tři prsty.
Prsty se stávají generickým modelem. Je to zástupný model všech předchozích zkušeností. Dítě nyní ví, že tři auta je tolik (tři prsty), i když auta fyzicky nevidí. Na základě těchto zkušeností začíná být dítě připraveno zapsat trojku číslicí. Tento abstraktní znak přijme a začne ho používat. Dítě však má pod pojmem „tři“ vybudované jasné číselné představy. Abstraktnímu pojmu rozumí. Nový poznatek se následně zabydlí v již existující struktuře znalostí v hlavě a dítě ho nadále používá.
Podobným způsobem jsou v učebnicích koncipovány všechny matematické oblasti zabudované do různých prostředí. Tak např. v prostředí krokování sbírá žák zkušenosti s přirozenými čísly, celými čísly, minusem před závorkou, rovnicemi i s absolutní hodnotou.
Když pak ve čtvrtém ročníku dostane úlohu: 2 − ( _ − 1) = −1, může se stát, že ji žák neumí v číslech řešit. Má však za sebou řadu zkušeností s krokováním, které se zde stane nástrojem (generickým modelem) k řešení úlohy. Žák převede úlohu do šipkového zápisu:
úlohu odkrokuje a najde řešení následující představou. Krokují dva žáci. První udělá: dva kroky dopředu, čelem vzad, nic, krok dozadu, čelem vzad. Druhý udělá: jeden krok dozadu. Co udělá první, aby stáli vedle sebe?
Problém se sbíráním zkušeností je však v tom, že zkušenosti se nedají přenést. Lze je jedině získat. Způsob, jak dítě zkušenost v matematice získá, je jen jeden – bude řešit úlohu. Jakákoli snaha žákovu cestu za poznáním zkrátit a pokusit se mu „zkušenost sdělit“ řeší pouze momentální situaci. I když naše úmysly mohou být ušlechtilé, ve skutečnosti tím děláme žákovi medvědí službu. Jeho poznatek je formální a je do hlavy uložen pouze krátkodobě. V podstatě se nejedná o poznatek v pravém slova smyslu.
Z vlastních životních zkušeností můžeme soudit, jak jsou výše psaná slova pravdivá. Stačí si vzpomenout, jak často řekne máma dítěti: „Kolikrát jsem ti to říkala?“. Dítě se přesto řízne do prstu, upadne ze židle a nečistí si zuby. Je mu celkem lhostejné, kolikrát mu to kdo řekl. Aby bylo opatrnější, musí získat zkušenost. Tedy opravdu se říznout do prstu a opravdu spadnout ze židle. Vzpomeňme na film Obecná škola a větu: „Neolizujte zábradlí“. Po zhlédnutí filmu jsme měli u plotu přimrzlého devítiletého chlapce. Musel si to vyzkoušet, protože nevěřil, že to, co viděl ve filmu, je pravda.
Pro změnu výhodou sbírání zkušeností je skutečnost, že žák ji získá i tehdy, když úlohu nevyřeší. Samotný fakt, že úlohu řeší, že jakkoli mentálně pracuje, je žákovi přínosný. Tedy žádná vyučovací hodina není ztracená, pokud žák pracuje. I tehdy, když se zrovna nedostane k cíli, získá zkušenost. Vyzkouší si, že tudy cesta nevede. Ujasní si, co ještě potřebuje k tomu, aby úlohu vyřešil. Uvědomí si, že by se mu hodila např. znalost malé násobilky. Podobné situace jsou pro žáky důležité, protože jednou je vysoce zhodnotí.
Doporučujeme: Dvoudílná série "Gradované úlohy nejen k přípravě na přijímací zkoušky na 8letá gymnázia." Publikace jsou vhodné i jako doplněk běžné výuky, když dítě není učené Hejného metodou. Tištěné verze koupíte na www.h-ucebnice.cz. Elektronickou verzi přes www.h-edu.cz.